Ask AI

You are viewing an unreleased or outdated version of the documentation

Fivetran (dagster-fivetran)

This library provides a Dagster integration with Fivetran.

Assets (Fivetran API)

class dagster_fivetran.FivetranWorkspace(*, account_id, api_key, api_secret, request_max_retries=3, request_retry_delay=0.25, disable_schedule_on_trigger=True)[source]

experimental This API may break in future versions, even between dot releases.

This class represents a Fivetran workspace and provides utilities to interact with Fivetran APIs.

sync_and_poll(context)[source]

experimental This API may break in future versions, even between dot releases.

Executes a sync and poll process to materialize Fivetran assets.

This method can only be used in the context of an asset execution.

Parameters:

context (AssetExecutionContext) – The execution context from within @fivetran_assets.

Returns:

An iterator of MaterializeResult

or AssetMaterialization.

Return type:

Iterator[Union[AssetMaterialization, MaterializeResult]]

class dagster_fivetran.DagsterFivetranTranslator[source]

Translator class which converts a FivetranConnectorTableProps object into AssetSpecs. Subclass this class to implement custom logic on how to translate Fivetran content into asset spec.

@dagster_fivetran.fivetran_assets(*, connector_id, workspace, name=None, group_name=None, dagster_fivetran_translator=None)[source]

experimental This API may break in future versions, even between dot releases.

Create a definition for how to sync the tables of a given Fivetran connector.

Parameters:
  • connector_id (str) – The Fivetran Connector ID. You can retrieve this value from the “Setup” tab of a given connector in the Fivetran UI.

  • workspace (FivetranWorkspace) – The Fivetran workspace to fetch assets from.

  • name (Optional[str], optional) – The name of the op.

  • group_name (Optional[str], optional) – The name of the asset group.

  • dagster_fivetran_translator (Optional[DagsterFivetranTranslator], optional) – The translator to use to convert Fivetran content into dagster.AssetSpec. Defaults to DagsterFivetranTranslator.

Examples

Sync the tables of a Fivetran connector:

from dagster_fivetran import FivetranWorkspace, fivetran_assets

import dagster as dg

fivetran_workspace = FivetranWorkspace(
    account_id=dg.EnvVar("FIVETRAN_ACCOUNT_ID"),
    api_key=dg.EnvVar("FIVETRAN_API_KEY"),
    api_secret=dg.EnvVar("FIVETRAN_API_SECRET"),
)

@fivetran_assets(
    connector_id="fivetran_connector_id",
    name="fivetran_connector_id",
    group_name="fivetran_connector_id",
    workspace=fivetran_workspace,
)
def fivetran_connector_assets(context: dg.AssetExecutionContext, fivetran: FivetranWorkspace):
    yield from fivetran.sync_and_poll(context=context)

defs = dg.Definitions(
    assets=[fivetran_connector_assets],
    resources={"fivetran": fivetran_workspace},
)

Sync the tables of a Fivetran connector with a custom translator:

from dagster_fivetran import (
    DagsterFivetranTranslator,
    FivetranConnectorTableProps,
    FivetranWorkspace,
    fivetran_assets
)

import dagster as dg
from dagster._core.definitions.asset_spec import replace_attributes

class CustomDagsterFivetranTranslator(DagsterFivetranTranslator):
    def get_asset_spec(self, props: FivetranConnectorTableProps) -> dg.AssetSpec:
        default_spec = super().get_asset_spec(props)
        return default_spec.replace_attributes(
            key=default_spec.key.with_prefix("my_prefix"),
        )


fivetran_workspace = FivetranWorkspace(
    account_id=dg.EnvVar("FIVETRAN_ACCOUNT_ID"),
    api_key=dg.EnvVar("FIVETRAN_API_KEY"),
    api_secret=dg.EnvVar("FIVETRAN_API_SECRET"),
)

@fivetran_assets(
    connector_id="fivetran_connector_id",
    name="fivetran_connector_id",
    group_name="fivetran_connector_id",
    workspace=fivetran_workspace,
    dagster_fivetran_translator=CustomDagsterFivetranTranslator(),
)
def fivetran_connector_assets(context: dg.AssetExecutionContext, fivetran: FivetranWorkspace):
    yield from fivetran.sync_and_poll(context=context)

defs = dg.Definitions(
    assets=[fivetran_connector_assets],
    resources={"fivetran": fivetran_workspace},
)
dagster_fivetran.load_fivetran_asset_specs(workspace, dagster_fivetran_translator=None)[source]

experimental This API may break in future versions, even between dot releases.

Returns a list of AssetSpecs representing the Fivetran content in the workspace.

Parameters:
Returns:

The set of assets representing the Fivetran content in the workspace.

Return type:

List[AssetSpec]

Examples

Loading the asset specs for a given Fivetran workspace:

from dagster_fivetran import FivetranWorkspace, load_fivetran_asset_specs

import dagster as dg

fivetran_workspace = FivetranWorkspace(
    account_id=dg.EnvVar("FIVETRAN_ACCOUNT_ID"),
    api_key=dg.EnvVar("FIVETRAN_API_KEY"),
    api_secret=dg.EnvVar("FIVETRAN_API_SECRET"),
)

fivetran_specs = load_fivetran_asset_specs(fivetran_workspace)
defs = dg.Definitions(assets=[*fivetran_specs], resources={"fivetran": fivetran_workspace}
dagster_fivetran.build_fivetran_assets_definitions(*, workspace, dagster_fivetran_translator=None)[source]

experimental This API may break in future versions, even between dot releases.

The list of AssetsDefinition for all connectors in the Fivetran workspace.

Parameters:
Returns:

The list of AssetsDefinition for all connectors in the Fivetran workspace.

Return type:

List[AssetsDefinition]

Examples

Sync the tables of a Fivetran connector:

from dagster_fivetran import FivetranWorkspace, build_fivetran_assets_definitions

import dagster as dg

fivetran_workspace = FivetranWorkspace(
    account_id=dg.EnvVar("FIVETRAN_ACCOUNT_ID"),
    api_key=dg.EnvVar("FIVETRAN_API_KEY"),
    api_secret=dg.EnvVar("FIVETRAN_API_SECRET"),
)

fivetran_assets = build_fivetran_assets_definitions(workspace=workspace)

defs = dg.Definitions(
    assets=[*fivetran_assets],
    resources={"fivetran": fivetran_workspace},
)

Sync the tables of a Fivetran connector with a custom translator:

from dagster_fivetran import (
    DagsterFivetranTranslator,
    FivetranConnectorTableProps,
    FivetranWorkspace,
     build_fivetran_assets_definitions
)

import dagster as dg
from dagster._core.definitions.asset_spec import replace_attributes

class CustomDagsterFivetranTranslator(DagsterFivetranTranslator):
    def get_asset_spec(self, props: FivetranConnectorTableProps) -> dg.AssetSpec:
        default_spec = super().get_asset_spec(props)
        return default_spec.replace_attributes(
            key=default_spec.key.with_prefix("my_prefix"),
        )


fivetran_workspace = FivetranWorkspace(
    account_id=dg.EnvVar("FIVETRAN_ACCOUNT_ID"),
    api_key=dg.EnvVar("FIVETRAN_API_KEY"),
    api_secret=dg.EnvVar("FIVETRAN_API_SECRET"),
)

fivetran_assets = build_fivetran_assets_definitions(
    workspace=workspace,
    dagster_fivetran_translator=CustomDagsterFivetranTranslator()
)

defs = dg.Definitions(
    assets=[*fivetran_assets],
    resources={"fivetran": fivetran_workspace},
)
class dagster_fivetran.fivetran_event_iterator.FivetranEventIterator(events, fivetran_workspace, context)[source]

A wrapper around an iterator of Fivetran events which contains additional methods for post-processing the events, such as fetching column metadata.

fetch_column_metadata()[source]

experimental This API may break in future versions, even between dot releases.

Fetches column metadata for each table synced with the Fivetran API.

Retrieves the column schema for each destination table.

Returns:

An iterator of Dagster events with column metadata attached.

Return type:

FivetranEventIterator

Legacy

dagster_fivetran.fivetran_resource ResourceDefinition[source]

Config Schema:
api_key (dagster.StringSource):

The Fivetran API key to use for this resource.

api_secret (dagster.StringSource):

The Fivetran API secret to use for this resource.

disable_schedule_on_trigger (Union[dagster.BoolSource, None], optional):

Specifies if you would like any connector that is sync’d using this resource to be automatically taken off its Fivetran schedule.

Default Value: True

request_max_retries (Union[dagster.IntSource, None], optional):

The maximum number of times requests to the Fivetran API should be retried before failing.

Default Value: 3

request_retry_delay (Union[Float, None], optional):

Time (in seconds) to wait between each request retry.

Default Value: 0.25

This resource allows users to programatically interface with the Fivetran REST API to launch syncs and monitor their progress. This currently implements only a subset of the functionality exposed by the API.

For a complete set of documentation on the Fivetran REST API, including expected response JSON schemae, see the Fivetran API Docs.

To configure this resource, we recommend using the configured method.

Examples:

from dagster import job
from dagster_fivetran import fivetran_resource

my_fivetran_resource = fivetran_resource.configured(
    {
        "api_key": {"env": "FIVETRAN_API_KEY"},
        "api_secret": {"env": "FIVETRAN_API_SECRET"},
    }
)

@job(resource_defs={"fivetran":my_fivetran_resource})
def my_fivetran_job():
    ...
dagster_fivetran.FivetranResource ResourceDefinition[source]

Config Schema:
api_key (dagster.StringSource):

The Fivetran API key to use for this resource.

api_secret (dagster.StringSource):

The Fivetran API secret to use for this resource.

disable_schedule_on_trigger (Union[dagster.BoolSource, None], optional):

Specifies if you would like any connector that is sync’d using this resource to be automatically taken off its Fivetran schedule.

Default Value: True

request_max_retries (Union[dagster.IntSource, None], optional):

The maximum number of times requests to the Fivetran API should be retried before failing.

Default Value: 3

request_retry_delay (Union[Float, None], optional):

Time (in seconds) to wait between each request retry.

Default Value: 0.25

This class exposes methods on top of the Fivetran REST API.

dagster_fivetran.load_assets_from_fivetran_instance(fivetran, key_prefix=None, connector_to_group_fn=None, io_manager_key=None, connector_to_io_manager_key_fn=None, connector_filter=None, connector_to_asset_key_fn=None, destination_ids=None, poll_interval=10, poll_timeout=None, fetch_column_metadata=True, translator=None)[source]

Loads Fivetran connector assets from a configured FivetranResource instance. This fetches information about defined connectors at initialization time, and will error on workspace load if the Fivetran instance is not reachable.

Parameters:
  • fivetran (ResourceDefinition) – A FivetranResource configured with the appropriate connection details.

  • key_prefix (Optional[CoercibleToAssetKeyPrefix]) – A prefix for the asset keys created.

  • connector_to_group_fn (Optional[Callable[[str], Optional[str]]]) – Function which returns an asset group name for a given Fivetran connector name. If None, no groups will be created. Defaults to a basic sanitization function.

  • io_manager_key (Optional[str]) – The IO manager key to use for all assets. Defaults to “io_manager”. Use this if all assets should be loaded from the same source, otherwise use connector_to_io_manager_key_fn.

  • connector_to_io_manager_key_fn (Optional[Callable[[str], Optional[str]]]) – Function which returns an IO manager key for a given Fivetran connector name. When other ops are downstream of the loaded assets, the IOManager specified determines how the inputs to those ops are loaded. Defaults to “io_manager”.

  • connector_filter (Optional[Callable[[FivetranConnectorMetadata], bool]]) – Optional function which takes in connector metadata and returns False if the connector should be excluded from the output assets.

  • connector_to_asset_key_fn (Optional[Callable[[FivetranConnectorMetadata, str], AssetKey]]) – Optional function which takes in connector metadata and a table name and returns an AssetKey for that table. Defaults to a function that generates an AssetKey matching the table name, split by “.”.

  • destination_ids (Optional[List[str]]) – A list of destination IDs to fetch connectors from. If None, all destinations will be polled for connectors.

  • poll_interval (float) – The time (in seconds) that will be waited between successive polls.

  • poll_timeout (Optional[float]) – The maximum time that will waited before this operation is timed out. By default, this will never time out.

  • fetch_column_metadata (bool) – If True, will fetch column schema information for each table in the connector. This will induce additional API calls.

Examples:

Loading all Fivetran connectors as assets:

from dagster_fivetran import fivetran_resource, load_assets_from_fivetran_instance

fivetran_instance = fivetran_resource.configured(
    {
        "api_key": "some_key",
        "api_secret": "some_secret",
    }
)
fivetran_assets = load_assets_from_fivetran_instance(fivetran_instance)

Filtering the set of loaded connectors:

from dagster_fivetran import fivetran_resource, load_assets_from_fivetran_instance

fivetran_instance = fivetran_resource.configured(
    {
        "api_key": "some_key",
        "api_secret": "some_secret",
    }
)
fivetran_assets = load_assets_from_fivetran_instance(
    fivetran_instance,
    connector_filter=lambda meta: "snowflake" in meta.name,
)
dagster_fivetran.build_fivetran_assets(connector_id, destination_tables, poll_interval=10, poll_timeout=None, io_manager_key=None, asset_key_prefix=None, metadata_by_table_name=None, group_name=None, infer_missing_tables=False, op_tags=None, fetch_column_metadata=True)[source]

Build a set of assets for a given Fivetran connector.

Returns an AssetsDefinition which connects the specified asset_keys to the computation that will update them. Internally, executes a Fivetran sync for a given connector_id, and polls until that sync completes, raising an error if it is unsuccessful. Requires the use of the fivetran_resource, which allows it to communicate with the Fivetran API.

Parameters:
  • connector_id (str) – The Fivetran Connector ID that this op will sync. You can retrieve this value from the “Setup” tab of a given connector in the Fivetran UI.

  • destination_tables (List[str]) – schema_name.table_name for each table that you want to be represented in the Dagster asset graph for this connection.

  • poll_interval (float) – The time (in seconds) that will be waited between successive polls.

  • poll_timeout (Optional[float]) – The maximum time that will waited before this operation is timed out. By default, this will never time out.

  • io_manager_key (Optional[str]) – The io_manager to be used to handle each of these assets.

  • asset_key_prefix (Optional[List[str]]) – A prefix for the asset keys inside this asset. If left blank, assets will have a key of AssetKey([schema_name, table_name]).

  • metadata_by_table_name (Optional[Mapping[str, RawMetadataMapping]]) – A mapping from destination table name to user-supplied metadata that should be associated with the asset for that table.

  • group_name (Optional[str]) – A string name used to organize multiple assets into groups. This group name will be applied to all assets produced by this multi_asset.

  • infer_missing_tables (bool) – If True, will create asset materializations for tables specified in destination_tables even if they are not present in the Fivetran sync output. This is useful in cases where Fivetran does not sync any data for a table and therefore does not include it in the sync output API response.

  • op_tags (Optional[Dict[str, Any]]) – A dictionary of tags for the op that computes the asset. Frameworks may expect and require certain metadata to be attached to a op. Values that are not strings will be json encoded and must meet the criteria that json.loads(json.dumps(value)) == value.

  • fetch_column_metadata (bool) – If True, will fetch column schema information for each table in the connector. This will induce additional API calls.

Examples:

Basic example:

from dagster import AssetKey, repository, with_resources

from dagster_fivetran import fivetran_resource
from dagster_fivetran.assets import build_fivetran_assets

my_fivetran_resource = fivetran_resource.configured(
    {
        "api_key": {"env": "FIVETRAN_API_KEY"},
        "api_secret": {"env": "FIVETRAN_API_SECRET"},
    }
)

Attaching metadata:

fivetran_assets = build_fivetran_assets(
    connector_id="foobar",
    table_names=["schema1.table1", "schema2.table2"],
    metadata_by_table_name={
        "schema1.table1": {
            "description": "This is a table that contains foo and bar",
        },
        "schema2.table2": {
            "description": "This is a table that contains baz and quux",
        },
    },
)
dagster_fivetran.fivetran_sync_op = <dagster._core.definitions.op_definition.OpDefinition object>[source]

Config Schema:
connector_id (dagster.StringSource):

The Fivetran Connector ID that this op will sync. You can retrieve this value from the “Setup” tab of a given connector in the Fivetran UI.

poll_interval (Union[Float, None], optional):

The time (in seconds) that will be waited between successive polls.

Default Value: 10

poll_timeout (Union[Float, None], optional):

The maximum time that will waited before this operation is timed out. By default, this will never time out.

Default Value: None

yield_materializations (Union[dagster.BoolSource, None], optional):

If True, materializations corresponding to the results of the Fivetran sync will be yielded when the op executes.

Default Value: True

asset_key_prefix (Union[List[dagster.StringSource], None], optional):

If provided and yield_materializations is True, these components will be used to prefix the generated asset keys.

Default Value: [‘fivetran’]

Executes a Fivetran sync for a given connector_id, and polls until that sync completes, raising an error if it is unsuccessful. It outputs a FivetranOutput which contains the details of the Fivetran connector after the sync successfully completes, as well as details about which tables the sync updates.

It requires the use of the fivetran_resource, which allows it to communicate with the Fivetran API.

Examples

from dagster import job
from dagster_fivetran import fivetran_resource, fivetran_sync_op

my_fivetran_resource = fivetran_resource.configured(
    {
        "api_key": {"env": "FIVETRAN_API_KEY"},
        "api_secret": {"env": "FIVETRAN_API_SECRET"},
    }
)

sync_foobar = fivetran_sync_op.configured({"connector_id": "foobar"}, name="sync_foobar")

@job(resource_defs={"fivetran": my_fivetran_resource})
def my_simple_fivetran_job():
    sync_foobar()

@job(resource_defs={"fivetran": my_fivetran_resource})
def my_composed_fivetran_job():
    final_foobar_state = sync_foobar(start_after=some_op())
    other_op(final_foobar_state)